I B. Tech II Semester Regular Examinations, September- 2021

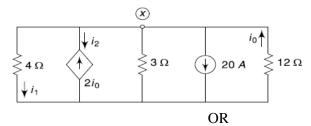
NETWORK ANALYSIS

(Comm. to ECE, EIE, ECT)

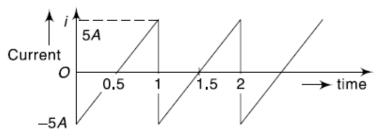
Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

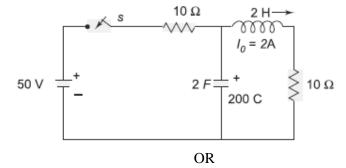

1 a) Distinguish between Ideal sources and practical sources

(3M) (4M)


- b) Two resistors 2*R* and 3*R* are connected in parallel across a 5A DC current source. The voltage that appears across the current source is 30V. Find *R* and the power dissipated in each resistor.
- c) Find i_0 , i_2 and the value of the dependent source for the following network:

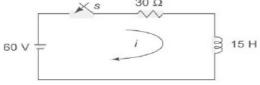
(7M)

(7M)

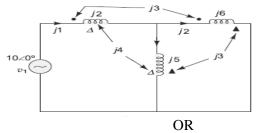


- 2 a) Explain about incidence matrix and its properties and also analyze the relationship (7M) between KCL and incidence matrix.
 - b) Find the average and rms value for the following waveform:

UNIT-II


For the circuit shown below, the initial current in the inductance is 2 A and its direction is as shown in the figure. The initial charge on the capacitor is 200 C with polarity as shown when the switch is closed. Determine the current expression for the inductance.

Analyze the dc response for a series R - L - C circuit.

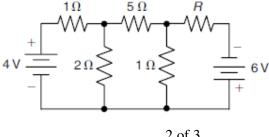

(7M)

A series RL circuit with R = 30 Ω and L = 15 H has a constant voltage V = 60 V (7M)applied at t = 0 as shown in figure below. Determine the current i, the voltage across resistor and the voltage across the inductor.

UNIT-III

- Explain the concept of Dot convention in magnetically coupled circuits and derive (7M) the expression for coefficient of coupling in terms of mutual and self-inductances of the coils.
 - b) Find the current passing through all the elements using mesh analysis for the (7M)following circuit.

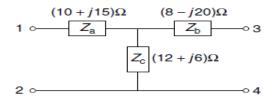
- a) Explain step by step procedure of phasor analysis for a Series RLC circuit. (7M)
 - b) A series ac circuit has a resistance of 15 Ω and an inductive reactance of 10 Ω . (7M) Calculate the value of a capacitor which is connected across this series combination so that the system has unity power factor. The frequency of ac supply is 50 Hz.


UNIT-IV

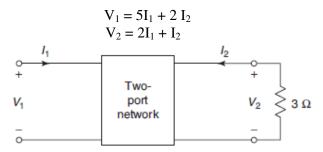
- What is resonance in an ac circuit and discuss the effects of resonance in electrical 7 (3M)systems
 - b) Define the terms 'Q factor' and 'band width' w.r.t ac circuits. (4M)
 - c) Voltages across resistance, inductance and capacitance connected in series are 3 (7M)V, 4 V and 5 V respectively. If supply voltage has 50-Hz frequency, what is the magnitude of supply voltage? Find the resonant frequency of this series RLC circuit.

OR

8 a) State and explain maximum power transfer theorem. (4M)


b) Find the value of R in the following circuit, such that maximum power transfer (10M)takes place. What is the amount of this power?

SET - 1


UNIT-V

- 9 a) Derive the h parameters of a two-port network. (7M)
 - b) Find Z parameters for the following network: (7M)

OR

- 10 a) Deduce the relationship between impedance and admittance matrix. (7M)
 - b) The following equations give the voltages V_1 and V_2 at the two ports of a two port network as shown in the following figure: (7M)

A load resistor of 3 Ω is connected across port 2. Calculate the input impedance.